Comparison of Neural Network Training Algorithms for the prediction of the patient's post-operative recovery area
نویسندگان
چکیده
An Artificial Neural Network(ANN) is a well known universal approximator to model smooth and continuous functions. ANNs operate in two stages: learning and generalization. Learning of a neural network is to approximate the behavior of the training data while generalization is the ability to predict well beyond the training data. In order to have a good learning and generalization ability , a good training algorithm is needed. Training a neural network can be treated as a nonlinear mathematical optimization problem and different algorithms can have quite different effects on the training result. As a result, training with different algorithms and repeating with multiple random initial weights can be helpful in getting a better solution to the neural network training problem. In addition to the popular basic back propagation training algorithm, many other algorithms are available. These include conjugate gradient descent, quasi-Newton, and Levenberg-Marquardt etc. This paper presents a novel comparison of different algorithms for the prediction of the patient’s postoperative recovery area.
منابع مشابه
Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملComparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses
Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...
متن کاملEarly Prediction of Gestational Diabetes Using Decision Tree and Artificial Neural Network Algorithms
Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...
متن کاملPrediction and optimization of load and torque in ring rolling process through development of artificial neural network and evolutionary algorithms
Developing artificial neural network (ANN), a model to make a correct prediction of required force and torque in ring rolling process is developed for the first time. Moreover, an optimal state of process for specific range of input parameters is obtained using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods. Radii of main roll and mandrel, rotational speed of main roll, pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCIT
دوره 4 شماره
صفحات -
تاریخ انتشار 2009